GECS SGHEME

USN

17MAT31

Third Semester B.E. Degree Examination, June/July 2019
Engineering Mathematics - III
Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Obtain the fourier series of the function $f(x)=x-x^{2}$ in $-\pi \leq x \leq \pi$ and hence deduce $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+$
(08 Marks)
b. Obtain the Half Range Fourier cosine series for the $f(x)=\sin x$ in $[0, \pi]$.
(06 Marks)
c. Obtain the constant term and the coefficients of first sine and cosine terms in the fourier expansion of y given

$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{y}:$	9	18	24	28	26	20

(06 Marks)

OR

2 a. Obtain the fourier series of $f(x)=\frac{\pi-x}{2}$ in $\left[\begin{array}{ll}0, & 2 \pi\end{array}\right]$ and hence deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots \ldots .$.
b. Find the fourier half range cosine series of the function $f(x)=2 x-x^{2}$ in $[0,3]$. (06 Marks)
c. Express y as a fourier series upto first harmonic given

$\mathrm{x}:$	0	30	60	90	120	150	180	210	240	270	300	330
$\mathrm{y}:$	1.8	1.1	0.30	0.16	1.5	1.3	2.16	1.25	1.3	1.52	1.76	2.0

(06 Marks)

Module-2

3 a. Find the fourier transform of $f(x)=\left\{\begin{array}{rr}a^{2}-x^{2} ;|x| \leq a \\ 0 & ;|x|>a\end{array}\right.$ and hence deduce $\int_{0}^{a} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$
(08 Marks)
b. Find the fourier sine transform of $\mathrm{e}^{-|\mathrm{x}|}$ and hence evaluate $\int_{0}^{\infty} \frac{\mathrm{x} \sin \mathrm{ax}}{1+\mathrm{x}^{2}} \mathrm{dx} ; \mathrm{a}>0 \quad$ (06 Marks)
c. Obtain the z-transform of $\cos n \theta$ and $\sin n \theta$.
(06 Marks)

4 a. Find the fourier transform of $f(x)=x e^{-1}$
(08 Marks)
b. Find the fourier cosine transform of $f(x)$ where

$$
f(x)=\left\{\begin{array}{cc}
x ; & 0<x<1 \\
2-x ; & 1<x<2 \\
0 ; & x>2
\end{array}\right.
$$

(06 Marks)
c. Solve $u_{n+2}+6 u_{n+1}+9 u_{n}=2^{n}$ with $u_{0}=u_{1}=0$ using z-transform.
(06 Marks)

Module-3

5
a. Fit a straight line $y=a x+b$ for the following data by the method of least squares.

$\mathrm{x}:$	1	3	4	6	8	9	11	14
$\mathrm{y}:$	1	2	4	4	5	7	8	9

(08 Marks)
b. Calculate the coefficient of correlation for the data:

$\mathrm{x}:$	92	89	87	86	83	77	70	63	53	50
$\mathrm{y}:$	86	83	91	77	68	85	54	82	37	57

(06 Marks)
c. Compute the real root of $x \log _{10} x-1.2=0$ by the method of false position. Carry out 3 iterations in $(2,3)$.
(06 Marks)

OR

6 a. Fit a second degree parabola to the following data $y=a+b x+c x^{2}$.

$\mathrm{x}:$	1	1.5	2	2.5	3	3.5	4
$\mathrm{y}:$	1.1	1.3	1.6	2	2.7	3.4	4.1

(08 Marks)
b. If θ is the angle between two regression lines, show that $\tan \theta=\left(\frac{1-r^{2}}{r}\right) \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$; explain significance of $r=0$ and $r= \pm 1$.
(06 Marks)
c. Using Newton Raphson method, find the real root of the equation $3 x=\cos x+1$ near $\mathrm{x}_{0}=0.5$. Carry out 3 iterations.
(06 Marks)

Module-4

7 a. From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks :	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	31	42	51	35	31

(08 Marks)
b. Use Newton's dividend formula to find $f(9)$ for the data:

x	$:$	5	7	11	13
$f(x):$	150	392	1452	2366	5202

(06 Marks)
c. Find the approximate value of $\int_{0}^{\pi / 2} \sqrt{\cos \theta} d \theta$ by Simpson's $\frac{1}{3}$ rd rule by dividing $\left[0, \frac{\pi}{2}\right]$ into 6 equal parts
(06 Marks)

OR

8 a. The area A of a circle of diameter d is given for the following values:

d	$:$	80	85	90	95
a	$:$	5026	5674	6362	7088

Calculate the area of circle of diameter 105 by Newton's backward formula.
(08 Marks)
b. Using Lagrange's interpolation formula to find the polynomial which passes through the points $(0,-12),(1,0),(3,6),(4,12)$.
(06 Marks)
c. Evaluate $\int_{4}^{5.2} \log _{\mathrm{e}} \mathrm{x} d \mathrm{~d}$ taking 6 equal parts by applying Weddle's rule.
(06 Marks)

CBCS SCMEMI

USN

Third Semester B.E. Degree Examination, June/July 2019 Electric Circuit Analysis

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-1

1 a. Find the input impedance $\mathrm{Z}_{\text {in }}$ for the network shown in Fig.Q.1 (a)
(06 Marks)

Fig.Q.1(a)

b. Construct the exact dual of the network N_{1} shown in Fig.Q.1(b) using dot method.
(08 Marks)

Fig.Q.1(b)

c. Find the loop currents i_{1}, i_{2} and i_{3} using Mesh analysis for the network shown in Fig.Q.1(c)
(06 Marks)

Fig.Q. 1 (c)

2 a. Write a system of nodal equations for the circuit of Fig.Q.2(a) using the nodal voltages V_{1} and V_{2} as the variables. What power is furnished by the dependent sources?
(10 Marks)

Fig.Q.2(a)

b. Find the voltage across the 5Ω resistor of Fig.Q.2(b) using source transformation technique.
(06 Marks)

Fig.Q.2(b)

1 of 4

17EE32
c. For the network shown in Fig.Q.2(c). Find the voltage $V_{A B}$ using the nodal method.
(04 Marks)

Fig.Q.2(c)

Module-2
a. In the network shown in Fig.Q.3(a) two voltage sources act on the lead impedance connected to the terminals AB . If this load is variable in both reactance and resistance, what load Z_{L} will receive maximum power? What is the value of this maximum power?
(06 Marks)

Fig.Q.3(a)

b. For the network shown in Fig.Q.3(b), find the Thevenin's equivalent network across the terminals A and B.
(08 Marks)

Fig.Q.3(b)

c. In the network shown in Fig.Q.3(c), determine the voltage ' V_{x} '. Then apply the reciprocity theorem and compare the two voltages.
(06 Marks)

Fig.Q.3(c)

4
a. Use superposition theorem to find voltage ' V ' in the network shown in Fig.Q.4(a) (06 Marks)

Fig.Q.4(a)

b. Fid.Q.4(b) shows one form of the equivalent circuit of a transistor amplifier. Obtain its Thevenin's equivalent network across the output terminals ' A ' and ' B '.
(08 Marks)

Fig.Q.4(b)

c. Find the value of R_{L} of the network of Fig.Q.4(c) that will absorb a maximum power and specify the value of that power.
(06 Marks)

Fig.Q.4(c)

Module-3

5
a. A series RLC circuit has $\mathrm{Q}_{0}=5.1$ at its resonant frequency of 100 kHz . Assuming the power dissipation of the circuit is 100 W when drawing a current of 0.8 A , find: i) R,L,C
ii) Band width (Δf) of the circuit and iii) Half-power frequencies.
(08 Marks)
b. Fig.Q.5(b) shows a network with zero capacitor voltage and zero inductor current when the switch ' K ' is open. At $t=0$ the switch ' K ' is closed. Solve for i) V_{1} and V_{2} at $t=0{ }^{+}$
ii) $\frac{d v_{1}}{d t}$ and $\frac{d v_{2}}{d t}$ at $t=0^{+}$
iii) $\frac{d^{2} v_{2}}{d t^{2}}$ at $t=0^{+}$
(12 Marks)

Fig.Q.5(b)

OR
6 a. Fig.Q.6(a) shows a RLC parallel circuit excited by a dc current source. At $t=0$, the switch ' K ' is opened. Find $v(t)$.
(12 Marks)

Fig.Q.6(a)

b. For the circuit of Fig.Q.6(b), find the value of capacitance so that the circuit resonates at $\mathrm{W}_{0}=5 \mathrm{~K} \mathrm{rad} / \mathrm{s}$.
(08 Marks)

Fig.Q.6(b)

Module-4

7 a. Find the Laplace transform of the periodic Saw tooth wave shown in Fig.Q.7(a).
(12 Marks)

b. Find the Laplace transform for the wave form shown in Fig.Q.7(b).
(08 Marks)

Fig.Q.7(b)

3 of 4

OR

8 a. State and prove initial - value and final - value theorems in Laplace transformation.
(10 Marks)
b. Fig.Q.8(b) shows an R-C circuit excited by a sinusoidal voltage $\mathrm{V}(\mathrm{t})=200 \sin (2000 \mathrm{t}+\phi)$. The capacitor has an initial charge of $1.25 \times 10^{-3} \mathrm{C}$ with polarity as shown. Find the current if the circuit is switched on at $\phi=90^{\circ}$, using Laplace transformation technique.
(10 Marks)

Fig.Q.8(b)

Module-5

9 a. Find the reading on the Wattmeter in Fig.Q.9(a) when the circuit is connected to a 400 V , $3-\phi$ supply. The phase sequence is RYB. Neglect Wattmeter losses.
(10 Marks)

Fig.Q.9(a)

b. Obtain the y-parameters of the circuit shown in Fig.Q.9(b). Find its equivalent circuit using y-parameters and find whether the network is i) reciprocal \quad ii) symmetrical. (10 Marks)

a. In a 3-phase 3-wire $400 \angle 0^{\circ}$ system abc, loads $6 \angle 0^{\circ}, 6 \angle 0^{\circ}$ and $8 \angle-90^{\circ} \Omega$ are connected to phases a, b, c respectively as shown in Fig.Q.10(a). Find : i) Line currents and ii) Voltage $\mathrm{V}_{\mathrm{ao}}, \mathrm{V}_{\mathrm{bo}}$ and V_{co}.
(10 Marks)

Fig.Q.10(a)

b. Find the transmission or ABCD parameters of network shown in Fig.Q.10(b). Find whether the network is
i) Reciprocal
ii) Symmetrical.
(10 Marks)

Fig.Q.10(b)

CBCS SCHIENE

17EE33

Third Semester B.E. Degree Examination, June/July 2019 Transformer and Generator

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, ahoosing ONE full question from each module.

Module-1

1 a. Explain operation of practical transformer on no load along with neat phasor diagram.
(07 Marks)
b. With neat circuit diagram, discuss in detail liow to perform OC and SC tests on single phase transformer.
(08 Marks)
c. Define voltage regulation of two winding transformer and derive condition for zero voltage regulations.
(05 Marks)

OR

2 a. What is $\mathrm{V}-\mathrm{V}$ connection? State the merits and demerits of $\mathrm{V}-\mathrm{V}$ (open delta) connection.
(07 Marks)
b. Find all day efficiency of single phase transformer having maximum efficiency for 98% at 15KVA at UPF (Unity Power Factor) and loaded as follows:
12 hours -2 kW at 0.5 power factor lagging
6 hours -12 kW at 0.8 power factor lagging 6 hours - No load.
(08 Marks)
c. State the advantages of single three phase transformer aver bank of single phase transformer.
(05 Marks)

Module-2

3 a. Twa single phase transformer with equal voltage ratio connected in parallel, share a load of 400 kVA at power faotor of 0.8 lag. Their equivalent impedance referred to secondary winding are $(1+\mathrm{j} 2.5) \Omega$ and $(1.5+\mathrm{j} 3) \Omega$ respectively. Calculate the load shared by each transformer.
(07 Marks)
b. With neat circuit diagram, explain in detail how to perform Sumpner's test. (08 Marks)
c. Mention the need and necessary conditions for parallel operation of two single phase transformer

OR

4 a. What is autotransformer? State advantages and disadvantages of autotransformer. (07 Marks)
b. Derive an expression for saving of copper when an autotransformer is used and also mention its applications.
(08 Marks)
c. With neat diagramr, describe off circuit tap changing transformer.
(05 Marks)

Module-3

5 a. A 6 pole, 150 armature current dc shunt generator has 480 conductors and is wave wound. Find demagnetizing and cross magnetizing ampere turns/pole at full load if.
i) Brushes are at the geometrical neutral axis (G.N.A)
ii) Brushes are shifted from G.N.A by 5° eleatrical
iii) Brushes are shifted from G.N.A by 5° rech. (07 Marks)
b. What is commutation? Explain practical commutation with neat diagram of DC machine.
(08 Marks)
c. What is three winding transformer? How the stabilization is achieved due to tertiary winding.
(05 Marks)

OR

6 a. Discuss comparison betweer the following in alternator
i) Single layer and double layer windings
ii) Full pitch and fraational pitch coils.
(07 Marks)
b. What is armature rection? With neat figures explain armature reaction in machine under normal working conditions.
(08 Marks)
c. Derive emf equation of alternators.
(05 Marks)

Module-4

7 a. What is synchronization of alternat๔rs? State the necessary condition for synchronization. How three phase alternators are synchronized?
(10 Marks)
b. Witll neat circuit diagram, explain how to perform slip test on salient pole synchronous machine and indicate how X_{d} and X_{q} can be determined.
(10 Marks)

OR

8 a. What is synchronoscope? How it is used for synchronization of alternators?
(07 Marks)
b. A $400 \mathrm{~V}, 50 \mathrm{~Hz}$ delta connected alternator has a direct axis reactance of 0.1Ω and q quadrature axis neactance of 0.07Ω pen phase. The armature resistance is negligible. The alternator is supplying 1000 A at 0.8 pf lagging p.f. i) Find excitation emf neglecting saliency and assuming $X_{d}=X_{s}$; ii) Find the excitation emf taking into account the saliency.
(08 Marks)
c. Write a short note on V-curves on synchronous generator.
(05 Marks)

Module-5

9 a. With neat circuit diagram, explain in detail how to perform zero power factor test and use potier reactance to determine regulation.
(10 Marks)
b. The effective resistance of $2.2 \mathrm{kV}, 50 \mathrm{~Hz}, 440 \mathrm{kVA}$, single phase alternator is 0.5Ω. on short circuit a field current of 40 Amp gives a full load current of 200 A . The emf on open circuit with the same field excitation is 1.16 KV . Find the value of synchronous impedance and find the voltage regulation at full laad and i) Unity power factor ii) 0.8 pf lag.
(10 Marks)

OR

10 a. What is short circuit ratio? Explain the significance of SCR.
(07 Marks)
b. Write a short note on capability curves of synchronous generator.
c. What is hunting in synchronous machine? Explain the role of damper winding.

CBGS SCHIMNI

USN

17EE34

Third Semester B.E. Degree Examination, June/July 2019
Analog Electronic Circuits
Time: 3 hrs .

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. With a neat circuit diagram, explain Emitter stabilized bias circuit, write the necessary equation.
b. Determine output voltage for the following circuit in Fig.Q.(b). Assume $f=1000 \mathrm{~Hz}$ and ideal diode.
(06 Marks)

Fig.Q.1(b)
c. Derive the expression for stability factors of fixed bias circuit with respect to $\mathrm{I}_{\mathrm{CO}}, \mathrm{V}_{\mathrm{BE}}, \beta$ and draw the circuit diagram.
(06 Marks)

OR

2 a. Explain the circuit of a transistor switch being used as an inverter.
(06 Marks)
b. Determine the voltage $\mathrm{V}_{C E}$ and the current I_{C} for the voltage divider configuration Given: $\mathrm{R}_{1}=39 \mathrm{~K} \Omega, \mathrm{R}_{2}=3.9 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C}}=10 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=1.5 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{E}}=50 \mu \mathrm{~F}, \mathrm{~B}=100, \mathrm{~V}_{\mathrm{BE}}=0.7$.
(08 Marks)
c. Sketch the output waveform for the network shown in Fig.Q.2(c). If the peak value of the a.c input if 15 V and draw the transfer characteristics.
(06 Marks)

Fig.Q.2(c)

Module-2

3 a. With a neat circuit diagram, derive an expression for Z_{i}, Z_{0} and A_{v} of fixed bias circuit using r_{e}-model.
(08 Marks)
b. For the Emitter follower network shown in Fig.Q.3(b). Determine r_{e}, Z_{i}, Z_{o} and A_{v}.
(06 Marks)

Fig.Q.3(b)
c. Prove that Miller effect of input capacitance $\mathrm{C}_{\mathrm{Mi}}=\left(1-\mathrm{A}_{V}\right) \mathrm{C}_{\mathrm{f}}$ and output capacitance $\mathrm{C}_{\mathrm{Mo}}=\left(1-\frac{1}{\mathrm{~A}_{\mathrm{v}}}\right) \mathrm{C}_{\mathrm{f}}$.
(06 Marks)

OR
4 a. For the following circuit determine $Z_{i}, Z_{i}, A_{v}, A_{i} \quad h_{i}=-0.99, h_{i b}=14.3 \Omega$.
(08 Marks)

Fig.Q.4(a)
b. What are the advantages of h-parameters?
(06 Marks)
c. Define h-parameters and obtain h-parameter equivalent circuit of CE configuration.
(06 Marks)

Module-3

5 a. Obtain expression for voltage gain, current gain, input and output impedance of a Darlington Emitter follower circuit. Draw necessary equivalent circuit.
(12 Marks)
b. With a neat block diagram, obtain expression for $Z_{i f}$ and $Z_{\text {of }}$ for voltage series feedback amplifier.
(08 Marks)

OR

6 a. Explain the general characteristics of negative feedback amplifier.
(08 Marks)
b. Explain the need of cascading amplifier. A given amplifier arrangement has the following gains. $A v_{1}=10, \mathrm{Av}_{2}=20$ and $\mathrm{Av}_{3}=40$. Calculate overall voltage gain and total voltage gain in dB .
(06 Marks)
c. With a simple block diagram, explain the concept of feedback amplifier.

Module-4

7 a. With a neat circuit diagram, explain the operation of a class B push pull power amplifier and maximum conversion efficiency is 78.5%.
(08 Marks)
b. With a neat circuit diagram, explain the operation of RC-phase shift oscillator using BJT and write $f_{\text {os }}$ equation.
(06 Marks)
c. A series fed class A amplifier as shown in Fig.Q.7(c). Operates from a DC source and applied sinusoidal input signal generates peak base current 9 mA . Calculate $\mathrm{I}_{\mathrm{CQ}}, \mathrm{V}_{\mathrm{CEQ}}, \mathrm{P}_{\mathrm{dc}}$, P_{ac} and efficiency.
(06 Marks)

Fig.Q.7(c)

OR

8 a. The frequency selective circuit arms of wain bridge oscillator uses $C_{1}=C_{2}=0.001 \mu \mathrm{~F}$, $\mathrm{R}_{1}=10 \mathrm{~K} \Omega$ while R_{2} is kept variable. The frequency is to be varied from 10 Hz to 50 kHz by varying R_{2}. Find the range of R_{2}.
b. With a neat circuit diagram, explain the operation of a transformer coupled class A power amplifier and prove that conversion efficiency is 50%.
(08 Marks)
c. With a neat circuit diagram, explain the working principle of crystal oscillator in series resonant mode.
(06 Marks)

Module-5

9 a. Explain the operation of JFET amplifier using fixed bias. Draw the JFET small signal model and derive the expression for $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{0}$ and A_{v}.
(06 Marks)
b. Explain the construction, working and characteristics of n-channel enhancement type MOSFET.
(08 Marks)
c. Determine the following for network shown in Fig.Q.9(c) $\mathrm{V}_{\mathrm{GSQ}}, \mathrm{V}_{\mathrm{DS}}, \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{D}}$. (06 Marks)

Fig.Q.9(c)

OR

(06 Marks)
10 a. Compare FET over BJT.
b. With a neat diagrams, Explain the construction, working and characteristics of n-JFET's.
(08 Marks)
c. Design the fixed bias network as shown in Fig.Q.10(c) having an a.c. gain of 10. Determine the value of R_{D}.
(06 Marks)

Fig.Q.10(c)

Third Semester B.E. Degree Examination, June/July 2019 Digital System Design

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. What is a K-map? Which is the code used to number K-map and why? Write a neat numbered 4 -variable K-map.
(06 Marks)
b. Using K-map, evaluate the minimal POS expression of, $f(a, b, c, d)=\pi M(0,2,4,6,8) \cdot \pi D(1,9,12,15)$
(08 Marks)
c. Evaluate the minimal SOP expression using VEM with ' Z ' as MEV.
$\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,3,5,7,8,9,10,12,13)+\sum \mathrm{d}(1,6,11,14)$
(06 Marks)

OR

2 a. What is don't care condition? What are its advantages?
(04 Marks)
b. Evaluate the canonical SOP expression and hence determine the minimal expression using K-map $F=A \overline{B D}+\bar{A} B+\bar{A} C+C D$.
(08 Marks)
c. Minimize the following SOP expression using Quine McCluskey method: $\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(3,7,8,10,11,12,14,15)+\sum \mathrm{d}(2,6)$
(08 Marks)

Module-2

3 a. With a neat diagram, explain the operation of a carry look-ahead adder circuit. (10 Marks)
b. Implement the following Boolean function using a $4: 1$ MUX with a and b as select inputs. $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(4,5,7,8,10,12,15)$
(06 Marks)
c. Implement a 2 to 4 decoder using 1 to 2 decoders.
(04 Marks)

OR

4 a. Design a full adder using 4:1 MUX.
(06 Marks)
b. Implement a 1-bit comparator using a suitable decoder.
(06 Marks)
c. With a logic diagram, explain the operation of a decimal to BCD priority encoder. (08 Marks)

Module-3

5 a. Explain the operation of an SR latch with a circuit diagram and characteristic table. Justify its application as switch debouncer with a relevant circuit and waveforms.
(08 Marks)
b. Design a 4 -bit shift register using DFFs. Design a twisted ring counter using a 4-bit shift register.
(06 Marks)
c. Design a mod-11 up ripple counter using TFF.
(06 Marks)
OR
6 a. What is the problem in SRFF? How is it eliminated in JKFF? Explain with a neat diagram.
(06 Marks)
b. With a neat logic diagram, explain the different modes of operation of universal shift register.
(07 Marks)
c. Design a synchronous counter using JKFF with counting sequence $0,2,6,1,3,7,0 \ldots$
(07 Marks)

Module-4

7 a. List out the merits and demerits of synchronous sequential circuit asynchronous sequential circuits.
(04 Marks)
b. Design a clocked synchronous sequential circuit that operates according to the state diagram shown in Fig.Q7(b). Use DFF in the circuit.

Fig.Q7(b)
(10 Marks)
c. Analyze the following sequential circuit and obtain: [Fig.Q7(c)]
i) FF input and output equations
iii) State table
ii) Transition table
iv) State diagram

Fig.Q7(c)
(06 Marks)

OR

8 a. Compare and contrast Mealy and Moore synchronous sequential networks with neat block diagrams.
(04 Marks)
b. A sequential network has one input and one output. The state diagram is as shown in Fig.Q8(b). Design the sequential network using TFF.

Fig.Q8(b)
2 of 3
c. An edge triggered DFF is connected as shown in Fig.Q8(c). Assuming $\mathrm{Q}=0$ initially, sketch the output waveform and determine the frequency of the output signal.

Fig.Q8(c)
(06 Marks)

Module-5

9 a. Explain entity and architecture with reference to VHDL code of full adder circuit.
(08 Marks)
b. Write VHDL code to implement 2:1 MUX.
(06 Marks)
c. List out all operators in VHDL with examples.
(06 Marks)

OR

10 a. Explain various data types supported in VHDL with examples.
(08 Marks)
b. Implement a 1-bit comparator either using VHDL code or verilog.
(04 Marks)
c. Implement a JKFF with active low asynchronous inputs pr and clr along with clock input using verilog/VHDL.
(08 Marks)

Third Semester B.E. Degree Examination, June/July 2019 Electrical and Electronic Measurements

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, choosing
 ONE full question from each module.

Module-1

1 a. Define sensitivity of Wheatstone bridge and obtain expression for sensitivity S_{B} of wheatstone bridge.
(08 Marks)
b. A small resistance of approximately $50 \mu \Omega$ is measured using Kelvin's double bridge. At balance, the value of the standard resistance is $100.05 \mu \Omega$ resistances of the inner ratio arms are 100.51Ω and 200Ω respectively, resistances of outer ratio arms are 100.4Ω and 200Ω respectively. The resistance of the interlink is $800 \mu \Omega$. Caiculate the magnitude of error in measurement.
(06 Marks)
c. Explain with a neat sketch, construction and working principle of Megger.
(06 Marks)

OR

2 a. Explain measurement of inductance by Anderson's bridge with neat diagram.
(08 Marks)
b. A a.c. bridge is balanced at 2 kHz with following components in each arm. Arm $\mathrm{AB}=10 \mathrm{~K} \Omega$, Arm $\mathrm{BC}=100 \mu \mathrm{f}$ in series with $100 \mathrm{~K} \Omega$, $\operatorname{Arm~} \mathrm{AD}=50 \mathrm{~K} \Omega$. Find the unknown impedance $R+J x$ in the arm DC, if the detector is between $B D$.
(06 Marks)
c. Explain sources and detectors in a.c. bridges.
(06 Marks)

Module-2

3 a. Explain the types of errors and how to minimize errors in wattmeters.
(06 Marks)
b. Explain with neat sketch calibration of single phase energy meter.
(08 Marks)
c. A wattmeter has a current coil of 0.03Ω resistance and a pressure coil of 6000Ω resistance. Calculate \% error if the wattmeter is so connected that
i) Current coil is on load side
ii) The pressure coil is on load side
(a) If the load takes 20 A at voltage of 220 V and $0.6 \mathrm{p} . \mathrm{f}$ in each case
(b) What load current would give equal errors with the two connections?
(06 Marks)
OR
4 a. With a neat sketch, explain the construction and working of II-phase electrodynamometer power factor meter.
(08 Marks)
b. With the neat sketch, explain the operation of western frequency meter. (06 Marks)
c. The number of revolutions $/ \mathrm{kwh}$ of a $230 \mathrm{~V}, 10 \mathrm{~A}$ Watt-hour meter is 900 . On a test at half load, the time taken for 20 revolution of the disc is found to be 69 secs. Determine the meter error at half load.
(06 Marks)

Module-3

5 a. With the help of neat sketch and phasor diagram, obtain the expression for transformation ratio (R) and phase angle (θ) of current transformer.
(10 Marks)
b. Explain Silbee's method of testing current transformer.
(06 Marks)
c. Write note on shunts and multipliers.
(04 Marks)

OR

6 a. Explain the method of measurement of magnetizing force with a neat diagram. (08 Marks) b. A particular bar type current transformer has 300 secondary turns. The secondary winding carries a burden of ammeter having resistance 1Ω and inductive reactance of 0.53Ω. While the secondary resistance and reactance are $0.25,0.35 \Omega$. The magnetizing m.m.f. required is 85 A while the current component for core losses is 50 A . Find: i) The primary current when secondary current is 5 A , ii) The ratio error, iii) The reduction in the number of turns of secondary to obtain zero ratio error.
(12 Marks)

Module-4

7 a. With the help of neat sketch, explain the working of true RMS voltmeter.
(08 Marks)
b. Explain the working of electronic multimeter.
(06 Marks)
c. Explain the working principle of electronic energy meter.

OR

8 a. With a block diagram, explain the
i) Ramp-type digital voltmeter
ii) Integrating type digital voltmeter.
(10 Marks)
b. What are the advantages of electronic instruments?
c. A coil with a resistance of 12Ω is connected across the test terminals of Q-meter circuit and resonance occurs when the frequency of the oscillator is 1000 kHz and the capacitance of the resonating capacitor is 75 pf . Calculate $\%$ error introduced in calculated value of Q due to an insertion resistance of 0.02Ω across the oscillator.
(06 Marks)

Module-5

9 a. Explain the following: i) Light emitting display
ii) Liquid crystal display.
(08 Marks)
b. Explain with neat sketch, cathode ray tube.
c. Write short notes on: i) Dot-matrix display
ii) Bar-matrix display.
(06 Marks)
OR
10 a. Explain with neat sketch electro-cardio-graph [ECG].
b. Explain strip-chart recorders.
c. Explain $\mathrm{x}-\mathrm{y}$ recorders.

Third Semester B.E. Degree Examination, June/July 2019
Additional Mathematics - I
Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module- 1

1 a. Find the sine of the angle between $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+2 \hat{k}$.
(08 Marks)
b. Express the complex number $\frac{(1+\mathrm{i})(1+3 \mathrm{i})}{1+5 \mathrm{i}}$ in the form $\mathrm{a}+\mathrm{ib}$.
(06 Marks)
c. Find the modulus and amplitude of $\frac{(1+\mathrm{i})^{2}}{3+\mathrm{i}}$.
(06 Marks)

OR

2 a. Show that $(1+\cos \theta+i \sin \theta)^{n}+(1+\cos \theta-i \sin \theta)^{n}=2^{n+1} \cdot \cos ^{n}\left(\frac{\theta}{2}\right) \cdot \cos \left(\frac{n \theta}{2}\right)$.
(08 Marks)
b. If $\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{b}=8 \hat{i}-4 \hat{j}+\hat{k}$, then prove that \vec{a} is perpendicular to \vec{b}. Also find $|\vec{a} \times \vec{b}|$.
(06 Marks)
c. Determine λ such that $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-4 \hat{k}$ and $\vec{c}=\hat{i}+\lambda \hat{j}+3 \hat{k}$ are coplanar.
(06 Marks)

Module-2

3 a. If $y=\cos (m \log x)$ then prove that $x^{2} y_{n+2}+(2 n+1) x y_{n+1}+\left(m^{2}+n^{2}\right) y_{n}=0$.
(08 Marks)
b. Find the angle of intersection of the curves $r^{2} \sin 2 \theta=a^{2}$ and $r^{2} \cos 2 \theta=b^{2}$.
(06 Marks)
c. Find the pedal equation of the curve $\mathrm{r}=\mathrm{a}(1+\sin \theta)$.

OR

4 a. Obtain the Maclaurin's series expansion of $\log \sec x$ up to the terms containing x^{6}. (08 Marks)
b. If $u=\operatorname{cosec}^{-1}\left(\frac{x^{\frac{1}{2}}+y^{\frac{1}{2}}}{x^{\frac{1}{3}}+y^{\frac{1}{3}}}\right)$, prove that $x u_{x}+y u_{y}=-\frac{1}{6} \tan u$.
(06 Marks)
c. Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ where $u=x+y+z, v=y+z, w=z$.
(06 Marks)

Module-3
5 a. Obtain a reduction formula for $\int_{0}^{\pi / 2} \sin ^{n} x d x,(n>0)$.
(08 Marks)
b. Evaluate $\int_{0}^{2 a} x^{2} \sqrt{2 a x-x^{2}} d x$.
(06 Marks)
c. Evaluate $\int_{0}^{1} \int_{x}^{x} x y d y d x$
(06 Marks)

6 a. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$.
(08 Marks)
b. Evaluate $\int_{0}^{\infty} \frac{x^{6}}{\left(1+x^{2}\right)^{9 / 2}} d x$.
(06 Marks)
c. Evaluate $\iint_{A} x y d x d y$ where A is the area bounded by the circle $x^{2}+y^{2}=a^{2}$ in the first quadrant.
(06 Marks)

Module-4

7 a. A particle moves along the curve $\vec{r}=\cos 2 t \hat{i}+\sin 2 t \hat{j}+t \hat{k}$. Find the components of velocity and acceleration at $t=\frac{\pi}{8}$ along $\sqrt{2} \hat{i}+\sqrt{2} \hat{j}+\hat{k}$.
(08 Marks)
b. Find divergence and curl of the vector $\vec{F}=\left(x y z+y^{2} z\right) \hat{i}+\left(3 x^{2}+y^{2} z\right) \hat{j}+\left(x z^{2}-y^{2} z\right) \hat{k}$.
(06 Marks)
c. Find the directional derivative of $\phi=x^{2} y z^{3}$ at $(1,1,1)$ in the direction of $\hat{i}+\hat{j}+2 \hat{k}$.
(06 Marks)

OR

8 a. Find the angle between the tangents to the curve $x=t^{2}, y=t^{3}, z=t^{4}$ at $t=2$ and $t=3$.
b. Find $\operatorname{curl}(\operatorname{curl} \vec{A})$ where $\vec{A}=x y \hat{i}+y^{2} z \hat{j}+z^{2} y \hat{k}$.
(08 Marks)
c. Find the constants a, b, c such that the vector field $(\sin y+a z) \hat{i}+(b x \cos y+z) \hat{j}+(x+c y) \hat{k}$ is irrotational.
(06 Marks)

Module-5

9 a. Solve $\frac{d y}{d x}=\frac{y}{x}+\sin \left(\frac{y}{x}\right)$
(08 Marks)
b. Solve $\frac{d y}{d x}+y \cot x=\sin x$.
(06 Marks)
c. Solve $\frac{d y}{d x}+\frac{y}{x}=y^{2}$
(06 Marks)

OR

10 a. Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.
(08 Marks)
b. Solve $x^{2} \frac{d y}{d x}=3 x^{2}-2 x y+1$.
(06 Marks)
c. Solve $\left[y\left(1+\frac{1}{x}\right)+\cos y\right] d x+[x+\log x-x \sin y] d y=0$.
(06 Marks)

Third/Fourth Semester B.E. Degree Examination, June/July 2019 Constitution of India, Professional Ethics \& Human Rights (COMMON TO ALL BRANCHES)

Time: 2 hrs.]
[Max. Marks: 30

INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. The members of the Constituent Assembly which drafted the constitution of India were,
a) Nominated by the British parliament
b) Nominated by the Governor General
c) Elected by the Legislative Assemblies of various provinces
d) Elected by the Indian National Congress and Muslim league.
7. Which one of the following determines that the Indian constitution is federal?
a) A written and rigid constitution
b) An independent judiciary
c) Vesting of residuary powers with the centre
d) Distribution of powers between the centre and the state.
8. The Indian parliamentary system is different from the British parliamentary system in which of the following respects?
a) Both a real and a nominal executive
b) A system of collective responsibility
c) Bicameral legislature
d) A different judicial review
9. Which one of the following objectives is not embodied in the Preamble to the Constitution of India?
a) Liberty of thought
b) Economic liberty
c) Liberty of expression
d) Liberty of belief
10. The mind of the makers of the Constitution of India is reflected in which of the following?
a) The Preamble
b) The Fundamental Rights
c) The Directive Principles of State policy
d) The fundamental duties.
11. Which one of the following rights was described by Dr. B.R. Ambedkar as the heart and soul of the Constitution?
a) Right to freedom of religion
b) Right to property
c) Right to equality
d) Right to constitutional remedies.
12. The $9^{\text {th }}$ schedule to the Indian Constitution was added by;
a) $1^{\text {st }}$ Amendment
b) $8^{\text {th }}$ Amendment
c) $9^{\text {th }}$ Amendment
d) $42^{\text {nd }}$ Amendment
13. Which one of the following Articles of the directive principles of state policy deals with the promotion of international peace and security?
a) 51
b) 48 A
c) 43 A
d) 41
14. The ideal of 'Welfare state' in the Indian Constitution is enshrined in its ;
a) Preamble
b) Directive Principles of State Policy
c) Fundamental rights
d) $7^{\text {th }}$ Schedule
15. For a citizen of India, the duty to pay taxes is a;
a) Fundamental duty
b) Legal obligation
c) Constitutional obligation
d) Moral obligation
16. Which of the following statements regarding the pardoning Powers of the President is incorrect?
a) Pardoning power of the president is restricted.
b) President can completely pardon any sentence
c) The power to pardon is the discretionary power of President
d) None of these.
17. Which one of the following is responsible for the preparation and presentation of union budget of the parliament?
a) Department of Revenue
b) Department of Economic Affairs
c) Department of Expenditure
d) None of these
18. Which of the following statement is incorrect regarding budget?
a) The term 'Budget' is not explicitly stated in Indian Constitution
b) The Budget can be introduced in Lok Sabha only
c) The introduction of budget required recommendation of the President
d) The Budget is passed like an ordinary bill in the parliament.
19. The power of the Supreme Court of India to decide disputes between the Centre and the States falls under its;
a) Advisory jurisdiction
b) Appellate jurisdiction
c) Original jurisdiction
d) Constitutional jurisdiction
20. The power to increase the number of judges in the Supreme Court of India is vested in;
a) The President of India
b) The Parliament
c) The Chief Justice of India
d) The Law Commission.
21. There is a Parliamentary System of Government in India because the
a) Lok Sabha is elected directly by the people
b) Parliament can amend the Constitution
c) Rajya Sabha cannot be dissolved
d) Council of Ministers is responsible to the Lok Sabha
22. Appointment, posting and promotion of district judge in a state are made by the
a) Governor in consultation with the High Court
b) Chief Justice of the High Court of that state in consultation with the Governor
c) President in consultation with the High Court
d) President in consultation with the Governor and the High Court.
23. Notifications in respect of by-elections to the Lok Sabha are issued by the
a) Election commission
b) Speaker of Lok Sabha
c) The Whip
d) No notification is required for by-election.
24. With reference to 'None of the Above (NOTA)' option on electronic voting machines and ballot papers, consider the following statements :
I) The Citizens of India have the right to negative vote by exercising the 'None of the Above' option in EVMs and ballot papers.
II) If NOTA gets the highest votes is an election, then the election is conducted again.
a) I only
b) I and II
c) II only
d) None of these
25. With reference to $73^{\text {rd }}$ Amendment Act of the constitution, a Grama Sabha is a body consisting of
a) All the adult population of the Village under the Panchayat
b) The whole population of the villages under the Panchayat other than children less than five years of age.
c) The registered voters of the villages under the Panchayat
d) None of the aboye.
26. Which of the following is not taken as the aim of engineering ethics?
a) Moral imagination
b) Recognition of ethical issues
c) Sense of responsibility
d) Shifting of responsibility
27. Which of the following is not a concept of responsibility?
a) Minimalist
b) Maximalist
c) Reasonable care
d) Good works
28. Corrupt Professional Judgment leads to
a) Integrity in R\&D
b) Reliability
c) Conflict of interest
d) None of these
29. The formulate of a soft drink is an example of
a) Copy Right
b) Trade Secret
c) Patent
d) Trade Marks
30. It is not a kind of trademark:
a) Designs
b) Sounds
c) Symbols
d) Good will
31. These are not trade secrets
a) Formulas
b) Principles
c) Devices
d) None of these
32. Stealing of intellectual property means
a) Cooking
b) Forging
c) Plagiarism
d) Symbols
33. Cooking means
a) Boiling under pressure
b) Making deceptive statements
c) Retaining results with fit the theory
d) Misieading the public about the quality of a product.
34. This is not dishonesty in engineering
a) Forging
b) Blending
c) Trimming
d) Cooking
35. One of the ways of reducing the risk is
a) Complex interaction
b) Tight coupling
c) Normalization of deviance
d) Changing the working system.

Third／Fourth Semester B．E．Degree Examination，June／July 2019 సన్నుఠ ఱึనిను
 （COMMON TO ALL BRANCHES）

Time： 2 hrs．］
［Max．Marks： 30

ズอఔనొగెళు

 ভ్ర్నెగి ఎరడు లుత్తరథన్ను గురుతిలుత్రూు అనూన్య．
5．ఎల్లా లుత్తరగళన్ను నిఱుగి ఒదగిసలాడ ఓ．ఎం．ఆరో లుङ్రర Шత్రిశొయు
 సురుతు దోఠ๘ఔొతు．

అ）ఱారిస్తశ
ఒ）ఎద్కి
च）ఈఙృలు దుర

2．＂దుః్డె డుండుల＂ఎందారా
అ）ఆంద్ డృదౌలశ
బ）నెభٌอలదుండెల
モ）డ్మేజైరు
๘）ఒิత్రేదుగఁ．

అ）రృలైజు రౌంగ
బ）Шసిరు ळేనస్ను
ే）నాపుతంంతి
๘）అదిరాంగ డురృణ．

$$
\text { Ver - D } 1 \text { of } 4
$$

అ）నอల్మనిల
బ）ఐదినిల
₹）ఆరశనల
డ）ఉళనిల．

అ）కீంવుగుణ
బ）సృత్టిఃగగుణ
छ）తృదుసె గుణ
ఠ）రాజస்గుణ．

అ）రిలeళ్తి దుత్తు శొలeaి
బ）రృอెణ
₹）బెల్జి F ．कలడు
డ）బొలదది రెదబన．

7．శజజ్జ－ఇదిర తత్సదు రృలు
అ）రృయ
బ）ठอద్య
₹）శُతృદ
డ్）ठాయిళ．

8．శత్తిదుసె－ఇదు
అ）జึలeడిబెద్
2は）సెంబందిత ఱ゙దేగుంવు
₹）నుడిగగణ్కు
డ）ద్టిరుర్తి ఱదద．

అ）దึఁアోகత్తు
బ）कீอก่ช่

10．నొలాదిదేళు－ఇడర నిజైదృథఁ
＠）నోలాడెళు
బ）నొอలひుత్తిద్దాళు
モ）నొలeడిద్దేళు
ఠ）నొలాడుతృతళ

అ）ఙُతుథิ
బ）$ద^{2}$ తిఁయో
₹）నెంభొలఁధฺలనా
డ）సైひ్తుపి ．

12．దొృడుణ－పిరుద్ద డెద్
అ）ఱెడుదెణ
బ）తెంఃఃణ
モ）బడ゙గగణ
డ）దొలడిణ

13．దె．రా．బెలంద్యంయదర శాద్యనాదు
అ）అంబిరాతనయయ దత్త
బ）ตినాయెర
モ）ఆనేందేంందా
๘）శెడతిలరెద భౌగఁఁదె

బ）బాల్టిలయు ळౌడు
モ）రృృణ
๔）ఎల్లా డుడుగియుర శనససు
 ळేలిదేచెరు．
అ）$ి$ ్వేల్చ్రరయ్యు
బ）శుదాండు
ซ）లా．బ．రాస్త్రి
డ）గాంధిలజి
 రెబిసిదె ఆయఃలగ
అ）ळృదేసులరు ఆయீอగగ

モ）నాల్టడి ఆయేจeగ
๘）ఎులర ఆయion

అ）జ゚งలుున దుడి
బ）దురళి దుణ్ణిగ
₹）డొంరజజ్జియె రనసుుగళళు
๘）Шుజ్టే దునసిన Шత్తు దొ2గగళు

18．శుదేండురపరు అణ్ణడ్యనన్ను ఏలగాందిద్దారె
అ）ळృస్య్గกృ
が）הేగేกอర
₹）గొలణేదార
๘）శొలిరృర

అ）గుణడొ2
బ）స్లంశ్ృ 0 Oి
₹）శెల్లు శరరుగుద సెదుయు
๘）Шుళినేనెత్ప．

20．ఎల్లరరంథెదనలల్ల నెన్నెగండ－ఎందు ఐలడిద సెంత
అ）అర్మైమాదిలిి
బ）ళిశునాళ శరిలథ
₹）బసెదణ
๘）તૈపદజ్ఞ．

$$
\text { Ver - D } 3 \text { of } 4
$$

అ）బి．జి．ఎలో నల్పౌపి
బ）శుదాండు బُలంది，
₹＇）బేలందై

22．＂గాంధి＂子థீกอర
అ）బేసేగెరజళ్రి రృబుణ
బ）బి．లంశేఁซ
モ）యొం．ఆరో．ఆనేదుతేమొతకిఁ
డ）చుపాండు

23．నౌపిరారు నేదిగిళు శదనె సెంశులద శపి
అ）ను．రంం．ఎచ్ప్రుండి
æ）శే．దసో．నినారో అळదుదో
₹）సిద్దలింగయయ
๘）బُలందె．

అ）రృృంతిరార
బ）సృడ్రిరారర
₹）సెదుగార
๔）యీద్దదృ అల్ల．

అ）దుळอదాయి
బ）భిలదు
₹）ठวడొలర
๘）నొతग్తదశి．

అ） 1956
బ） 1971
部） 1975
๔） 1973.

27．దేల్లమేల్లనే－ఇదు
అ）ద్చిరుర్తి
బ）జీอఁడునుడి
₹）అనురెరెణ అద్యయయ
๘）యోవుుదు అల్ల

28．＂దుశ్కిళు దురి＂－నదు
అ）ద్మిరురి
బ）డృత్యయ రుంప
₹）జేอఁడునుడి
๘）అనుళరరణ డెద

29．ก่ళ่గళสన－ఇదు
అ）అనుదరరేణ అద్యయ
బ）ద్టిరుర్తి
₹）జึలఁడునుడే ఱెద

30．ఆठว ర－ఇదేరె తతత్బద రృడ
అ）ఆగत
బ）అกస
モ）ఆరృళ
๘）ఆกว $\vec{\omega}$ ．

Third/Fourth Semester B.E. Degree Examination, June/July 2019 Kannada Kali (COMMON TO ALL BRANCHES)
Time: 2 hrs .]
[Max. Marks: 30
INSTRUCTIONS TO THE CANDIDATES

1. Answer all the thirty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, use of whiteners on the OMR sheets is strictly prohibited.

Note : Fill in the blank by translating the given English word to Kannada.
[From Question No: 1 to 5]

1. Country:
a) Desha
b) Vesha
c) Rajya
d) Taluk
2. Girl: \qquad
a) Huduga
b) Ganda
c) Hudugi
d) Badagi
3. Mother: \qquad
a) Tande
b) Tayi
c) Magalu
d) Hendati
4. Circular:
a) Chowka
b) Aayatha
c) Vrittakara
d) Udda
5. Gold:
a) Chinna
b) Belli
c) Vajra
d) Havala

Note : Substitute the words from the following each sentence in appropriate place. [From Q No. 6 to 8]
6. Doctor Aushadi \qquad (kodu)
a) Heltare
b) Kottaru
c) Sigtare
d) Kelu
7. Leela ivattu bengalurige \qquad (Hogu)
c) ide
d) Howdu
8. TV \qquad tale novu baruttade. (Nodu)
a) Odidare
b) Kelidre
c) Nodidre
d) Idre

Note : Write the English word for given Kannada word. [From Q No. 9 to 12]
9. Vayasu:
\qquad
a) Year
b) Month
c) Week
d) Age
10. Tarakari:
\qquad b) Lemon
c) Vegetable
d) Potato
a) Fresh
11. Gottu: \qquad
b) Like
c) Dark
d) Cold
12. Adigemane:
\qquad b) Kitchen
c) Street
d) Hall
a) Bath room

Note : Fill in the blank choosing the right word from the group below :
13. Neevu Hege - ? ?
a) Iddare
b) Iddiri
c) Iddale
d) Iddi

Note : Translate the following Kannada question into English.
[from question No. 14 to 15]
14. Aa Pustaka olleyadu.
a) Which book is good?
b) That book is good.
c) My book is good.
d) Her book is bad.
15. Naanu beligge Edde.
a) I got up late.
b) I got up in the morning.
c) I like sleeping
d) He woke up late.

Note : Translate the following English words to Kannada [from Q No. 16 to 20]
16. Curd: \qquad
a) Majjige
b) Anna
c) Sambar
d) Mosaru
17. Grass: \qquad
b) Hallu c) Bellu
d. Mullu
18. To laugh: \qquad
b) Nagu
c) Bidu
d) Magu
19. Hot water: \qquad
a) Tanneru
b) Bella
c) Bisi neeru
d) Hasiru
20. Lesson: \qquad
b) Nota
c) Parisara
d) Jagala
a) Paata

Note: Translate the Kannada word into English.
[From Q No. 21 to 30]
21. Maralu: \qquad
b) Sand
c) People
d) Bank
22. Samparka:
a) Run
b) Father
c) Contact
d) Doubt
23. Hatti:
a) Cotton
b) Bread
c) Jar
d) King
24. Parisara:
a) Daily
b) Class
c) Duty
d) Environment
25. Tola:
a) Tall
b) Strong
c) Garden
d) Like
26. Jwara:
a) Meal
b) Fever
c) Gruel
d) Month
27. Raita: \qquad
a) Thieves
b) Grass
c) Farmer
28. Kaanu: \qquad
b) To ask
c) To keep
d) To play
29. Roodhi: \qquad
b) Practise
c) Hot water
d) Learn
30. Paata: \qquad
b) Lesson
c) Poor
d) Happy
a) Tour

